

Estimating The Software Metrics Using
Automatic Testing And Integrating Testing

Lithu Mathew 1, Mr. P.M.S.S. Chandu2

1 Department Of Computer Science & Engineering 2Asst. Professor, Department Of Computer Science &
Sathyabama University , Chennai, India Sathyabama University, Chennai, India

Abstract — A number of analytical models have been
proposed to address the problem of quantifying the software
dependability, one of the most important metrics of software
quality. The difference of existing software reliability models
can be classified according to the several different
classification systems. The classification proposed is based
primarily on the phase of software life cycle during which the
models are applicable: debugging phase, validation phase, or
operational phase. Complex systems can incur huge
verification costs. Actual specification usually assigns
predefined risk levels to components in the design phase, to
provide some instruction for the authentication. It is a rough-
grained drill that does not contemplate the costs and does not
provide sufficient modelling basis to let engineers
quantitatively optimize resources usage. Software accuracy
allotment models partially address such affairs, but they
usually make so many expectation on the input parameters
that their application is difficult in practice. In this paper, we
try to trim this break, proposing reliability and testing
resources allocation model that is able to provide solutions at
various levels of detail, depending upon the knowledge the
admin has about the system. The model aims to significantly
classify the most critical components of software architecture
in order to best assign the testing resources to them.

Keywords- Software Quality ,cost, process, various test cases.

I. INTRODUCTION
Software testing is an investigation conducted to provide
stakeholders with information about the quality of the
product or service under test .Software testing can also
provide an objective, autonomous outlook of
the software to allow the business to appreciate and
understand the risks of software application. Test
techniques build, but are not defined to the process of
executing a program or application with the intent of
finding software bugs (errors or other defects).
Software testing can be stated as the action of validating
and verifying that a computer program/application/product:
meets the requirements that guided its design and
development, works as expected, can be implemented with
the same characteristics, and satisfies the needs of
stakeholders.
Software testing, depending on the testing method engaged,
can be implemented at any date in the software
development process. Commonly most of the test effort
occurs after the requirements have been defined and the
coding process has been ended, but in the agile path most
of the test attempt is on-going. As such, the procedure of
the test is governed by the chosen software development
methodology. Toward this aim, the development process of

such systems is usually complemented by several analysis
techniques (e.g., hazard analysis, FTA, and FMECA) in the
requirement specification and in the design phase as well.
Once the system has been implemented, the verification
process has to provide the final assurance that the system
meets the required reliability level. The verification phase
is usually responsible for the major fraction of the overall
costs, especially for critical systems. The efficacy of the
verification phase strongly depends on the correct
identification of the most critical components in the
software architecture, as the convenient testing capability
are usually allotted based on the components’ risk levels.
Several researchers have tried to quantify the required
software components reliability that will assure a minimum
total system reliability. This optimization problem has
usually been addressed as a reliability allocation problem.
Most of the papers in the software field coped with the
design phase and dealt with the redundancy reliability
allocation. some authors also dealt with the problem in the
authentication stage , where the issue is to allocate
reliabilities to be achieved during testing . Typically, these
problems are addressed by proposing some kind of model
that allows engineers to carry out an optimal allocation.
 Software bugs will almost always exist in any software
module with moderate size: not because programmers are
careless or reckless, but because the intricacy of software
is generally intractable and humans have only limited
ability to manage complexity. Discovering the design
defects in software, is equally difficult, for the same reason
boundary values are not sufficient to guarantee correctness.
A further complication has to do with the dynamic nature
of programs. If a defeat occurs during preliminary testing
and the code is alternated, the software may now work for a
test case that it didn't work for previously. But its
behaviour on pre-error test cases that it passed before can
no longer be guaranteed.
In this paper, we propose an approach to quantitatively
identify the most critical components of software
architecture in order to best assign the testing resources to
them. In particular, we present an optimization model for
testing resources allocation that includes all of the
mentioned aspects affecting the reliability of a complex
software system. In order to represent the software
architecture, we employ the so-called architecture-based
reliability model; in particular, a Discrete Time Markov
Chain (DTMC)-type state-based model is take-up. This
allows us to accurately consider the effects of such
architectural features as loops and conditional branching on

Lithu Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2524-2527

www.ijcsit.com 2524

the overall reliability. Moreover, the architectural model
encompasses the operating system to consider its reliability
and its influence on the application. The proposed
optimization model also considers the most common fault
tolerance mechanisms (such as restart a component, retry
application as recovery mechanisms as also a failover to a
standby) that critical systems typically employ.
Furthermore, we try to impart the necessary flexibility to
the model by: 1) providing different levels of solutions
according to the information the user gives as input and 2)
carrying out a sensitivity analysis in order to analyze the
effect of the variation of some parameters on the solution.
Information needed for model parameterization can be
obtained by the user either considering design/code
information (such as UML diagrams) and simulation before
the testing of the system version under consideration or by
dynamically profiling a real execution from system test
cases of a previous version. Depending on the availability
and the accuracy of information, the user may adopt one of
the two approaches (or a combination of both). Finally, the
impact of performance testing time and the second-order
architectural effects are also considered for greater
accuracy of the result.

II. RELATED WORK
For a certain amount of total testing time, only a fraction of
the injected faults are removed. At the end of the testing,
the reliability predicted by the model is compared with the
In existing systems faulty version of the program is created
by reinserting faults belonging to real fault sets discovered
during integration testing .This faulty version emulates the
previous version of the application. Testing execution for
the faulty version is done only actual achieved Reliability.
A lot of work in the past considered the optimal allocation
of the reliabilities to minimize a cost function, related to the
design or the verification phase costs. Much initial research
dealt with hardware systems (e.g., the series-parallel
redundancy- allocation problem has been widely studied);
software systems received attention more recently. Most of
the work in the software area is concerned with the design
phase in which the goal is to select the right set of
components with a known reliability and the amount of
redundancy for each one of them, minimizing the total cost
under a reliability constraint or maximizing the total
reliability under a cost constraint (more specifically, this is
a redundancy reliability allocation problem). In some cases,
they also considered the redundancy strategies and the
hardware. For instance, the work in when redundancy is not
considered, the reliability allocation problem can still refer
either to the design or to the verification phase. For
instance, authors in proposed an economic model to
allocate reliabilities during the design phase, minimizing a
cost function counting on fixed development costs and a
previously experienced failure decrease cost. The task in
also refers to the design phase and authors define a general-
behaviour cost function to relate the costs to the reliability
of a component.
Not many papers considered the problem in the software
verification phase, where the concern is to earmark
reliabilities that components need to achieve during their

testing. Among these papers, authors in proposed an
optimization model with the cost function based on well
known reliability growth models. They also include the use
of a coverage factor for each component, to take into
account the possibility that a failure in a component could
be tolerated. Some of the cited papers also consider the
solution for multiple applications, i.e., they aim to satisfy
reliability requirements for a set of applications. However,
none of the cited papers explicitly considers the
architecture of the application. Work in considers the
software architecture implicitly, by taking into account the
utilization of each component with a factor assumed to be
known. Among these, only Everett refers to the verification
phase. Almost all of the cited papers about reliability
allocation belong to the class of the so called additive
models. However, there are other ways to describe a
software application which can explicitly consider the
architecture and lend themselves to an easy integration with
the other aspects described in Section 1, such as the
Operating System, the fault tolerance mechanisms, the
sensitivity analysis and the performance testing. They are
the state-based models and the path-based models. Both the
latter ones and additive models belong to the class of the
so-called Architecture-based models. This kind of model
has gained importance since the advent of object-oriented
and component-based systems, when the need to consider
the internal structure of the software to properly
characterize its reliability has become important (in the
past, reliability analysis was conducted mainly considering
the software as a black box). This led to an increasing
interest in the architecture-based reliability and
performance analysis. State-based models use the control
flow graph to represent software architecture; they assume
that the transfer of control among components has a
Markov property, modelling the architecture as a DTMC, a
Continuous Time Markov Chain (CTMC), or semi- Markov
Process (SMP). Path-based models compute the system
reliability considering the possible execution paths of the
program.
Additive models, mentioned above, where the component
reliabilities are modelled by no homogeneous Poisson
process (NHPP) and the system failure intensity is
computed as the sum of the individual components failure
intensities So far, state-based and path-based models have
been mainly used to analyze system reliability, starting
from its Component reliabilities, while the reliability
allocation problem has been mainly based on additive
models, as described above. In the former, the software
Architecture and the failure behaviour of the software are
combined in the same model, while a hierarchical approach
separately solves the architectural model and then
superimposes The failure behaviour of the components on
the solution. Although hierarchical models provide an
approximation to the composite model solution, they are
more Flexible and computationally tractable. In the
composite model, evaluating different architectural
alternatives or the effect of changing individual
components behaviour is computationally expensive.

Lithu Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2524-2527

www.ijcsit.com 2525

III. PROPOSED SYSTEM
Optimization model is allocated to achieve the target in less
period of time. The testing resources are implemented
manually and automatically for different modules. Ordering
for the system is done to achieve a required reliability level.
Minimum verification costs are produced. Manual testing is
proved to best one rather than automated testing.
A. Performance evaluation.
3.1. Quality Attribute for Manual Testing

Fig: 3.1: Quality attribute for manual testing graph

X-axis-Test cases
Y-axis- Quality attribute
This graph shows the x axis value of the manual efficiency
of quality in numeric values. And y axis shows value of the
metrics of the quality attribute.

3.2. Cost Attribute for Manual Testing

Fig: 3.2: Cost attribute for manual testing graph.

X-axis-Test cases
Y-axis- Cost attribute
This graph shows the x axis value of the manual efficiency
of quality in numeric values. And y axis shows value of the
metrics of the quality attribute.

3.3. Process Attribute in Manual Testing

Fig: 3.3: Process attribute for manual testing graph.

X-axis-Test cases
Y-axis- Process attribute

This graph shows the x axis value of the manual efficiency
of process in numeric values. And y axis shows value of the
metrics of the quality attribute.

3.4.Graph name: Quality Attribute for Automated Testing

Fig: 3.4:Quality attribute for automated testing graph.

X-axis-Test cases
Y-axis- Quality attribute
This graph shows the x axis value of the automated
efficiency of quality in numeric values. And y axis value
shows of the metrics of the quality attribute.

3.5.Graph name: Cost attribute for automated testing

Fig: 3.5: Cost attribute for automated testing graph.

X-axis-Test cases
Y-axis- Cost attribute

This graph shows the x axis value of the automated
efficiency of cost in numeric values. And y axis value
shows of the metrics of the cost attribute.

3.6.Graph name: Process Attribute for Automated Testing

Fig: 3.6: Process attribute for automated testing graph

X-axis: Test cases
Y-axis: Process attribute
This graph shows the x axis value of the automated
efficiency of process in numeric values. And y axis value
of the metrics of the process attribute.

Lithu Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2524-2527

www.ijcsit.com 2526

3.7.Comparison between Manual and Automated Testing
This graph shows the x axis value of the both manual and
automated efficiency of quality, cost, and process in
numeric values. And y axis value of the metrics of those
attributes.

Fig: 3.7: Comparison between manual and automated

testing graph.

IV. CONCLUSION
We proposed a Metrics model to allocate the testing
resources to different system components like quality, cost,
and process in order for the system to achieve a required
reliability level at minimum verification costs. The purpose
of the model, through the tool implementing it, is,
therefore, to drive engineers in the verification phase. The
optimization model was used to provide flexible solutions,
at different levels in manual testing as well as automation
tools, to the information provided by the user.

REFERENCES

[1] J. Onishi, S. Kimura, R.J.W. James, and Y. Nakagawa, “Solving the
Redundancy Allocation Problem with a Mix of Components Using
the Improved Surrogate Constraint Method,” IEEE Trans.
Reliability, vol. 56, no. 1, pp. 94-101, Mar. 2007

[2] C. Huang, S. Kuo, and M.R. Lyu, “An Assessment of Testing- Effort
Dependent Software Reliability Growth Models,” IEEE Trans.
Reliability, vol. 56, no. 2, pp. 198-211, June 2007.

[3] V. Almering, M. Van Genuchten, G. Cloudt, and P.J.M. Sonnemans,
“Using Software Reliability Growth Models in Practice,” IEEE
Software, vol. 24, no. 6, pp. 82-88, Nov./Dec. 2007.

[4] S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Incorporating Fault
Debugging Activities into Software Reliability Models: A
Simulation Approach,” IEEE Trans. Reliability, vol. 55, no. 2, pp.
281-292, June 2006.

[5] C. Huang and M.R. Lyu, “Optimal Release Time for Software
Systems Considering Cost, Testing-Effort, and Test Efficiency,”
IEEE Trans. Reliability, vol. 54, no. 4, pp. 583-591, Dec. 2005

[6] I. Rani and R.B. Misra, “Economic Allocation of Target Reliability
in Modular Software Systems,” Proc. Ann. Reliability and
Maintainability Symp. pp. 428-432, 2005.

[7] SAF.ET1.ST03.1000-MAN-01, “Air Navigation System Safety
Assessment Methodology (v2-0),” EUROCONTROL EATMP
Safety Management, Apr. 2004.

[8] N. Wattanapongsakorn and S.P. Levitan, “Reliability Optimization
Models for Embedded Systems with Multiple Applications,” IEEE
Trans. Reliability, vol. 53, no. 3, pp. 406-416, Sept.2004.

[9] M.R. Lyu, S. Rangarajan, and A.P.A. van Moorsel, “Optimal
Allocation of Test Resources for Software Reliability Growth
Modeling in Software Development,” IEEE Trans. Reliability, vol.
51, no. 2, pp. 183-192, June 2002.

[10] A.O.C. Elegbede, C. Chu, K.H. Adjallah, and F. Yalaoui,
“Reliability Allocation through Cost Minimization,” IEEE Trans.
Reliability, vol. 52, no. 1, pp. 106-111, Mar. 2003.

[11] K.S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications, John Wiley and Sons, 2001.

Lithu Mathew et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2524-2527

www.ijcsit.com 2527

